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Abstract 

This study aims to produce numerical solution of one-dimensional advection-

diffusion equation generated from lumped parameter model of lung channel. The 

numerical scheme FTBSCS is employed to solve the model. The effect of inductive 

time constant from 0 to 3s is computed numerically and presented graphically. 

Computed results show that advection exits in oscillation and transition mode. The 

stability condition of the scheme leads to determine the range of inductive time 

constant. 
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Introduction 

Water pollution in oceans, rivers, lakes or groundwater and pollution in 

atmospheretake place continually in surroundings. It is essential to know 

the contaminant or pollutant concentration or the salinity or temperature 

distribution in the water for safety of the environment [1]. This type of 

problem describes transport and diffusion process can be modeled using 

one dimensional advection diffusion equation (ADE). ADE illustrates 

many quantities such as mass, velocity, vorticity, heat and energy [2].Many 

authors are involved in solving ADE by using finite difference method 

(FDM).The mathematical model of water pollution is solved using implicit 

centered difference scheme in space and forward difference method in time 

by [3]. Aral and Liao [4] solved for two-dimensional transport equation 

with time dependent dispersion coefficients analytically. Kumar et al. [5] 

presented analytical solution of one dimensional ADE with variable 

coefficients in a finite domain using Laplace transformation. The ADE has 

been used as a model equation in many engineering problems such as 

dispersion of tracers in porous media [6,7], pollutant transport in rivers and 

streams [8], thermal pollution in river systems [9]. Stability analysis of 

finite difference scheme for solving ADE isstudied by [10-13]. As stated 

above, most of the works has been done for open channel. But ADE has 
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wide applications in other disciplines too, like biosciences, soil physics, 

petroleum engineering and chemical engineering. In vivo, fluid (liquid or 

gas) moves along closed channel and flow might be transported to 

downstream by advection or spread out by diffusion when unidirectional 

flow is weaken. For example, a complete cycle of respiration in human 

lung channel is a consequence of oscillatory flow (advection)and 

stagnation in transition (diffusion) in nature. A patient who is unable to 

perform respiration, artificial high frequency oscillatory ventilation 

(HFOV) helps to survive in the world. HFOV controls the constant 

oscillatory flow along human lung channel and flows in lung channel faces 

resistance and compliance effects. Oscillatory flow and mass transport was 

studied along model channel of human lung by [14, 15]. They simulated 

governing equations with boundary conditions to show effective diffusion 

along straight tube. Laminar, turbulent and oscillatory dispersion along a 

circular channel is calculated by [16]. He established a relation between 

channel radius and diffusion coefficient. Tanaka et al. [17] examined that a 

secondary flow during HFOV method ensures effective diffusion in bent 

and bifurcated tubes than in straight tube. A lamped-parameter model has 

been developed to study airflow distribution by Elad et al. [18] .The 

authors also derived the modified time-dependent expressions of resistance 

and compliance of a single compartment. Numerical analysis of air flow 

along lung channel with asymmetric compliance was examined 

experimentally and numerically by Hirahara et al. [19]. We found that the 

flow for inhomogeneous compliance ratio leads to irreversible flow along 

lung model. This type of flow effect might be the result of diffusion.  

In the current paper, a transport equation of lung model channel is 

produced from lumped parameter model [18] and is solved by FTBSCS 

scheme of explicit finite difference method. The inductive time constant 

leads the rate of diffusion for oscillatory mode and at the transition mode. 

The numerical results are presented graphically. 

Formation of Mathematical Model 

A model channel of human lung with compliance C (flexibility) and 

resistance R is taken under consideration. An oscillatory flow with fluid 

velocity u  is passing along the model channel and inertial effect L raise. If 
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)(tq is the flow rate and P  is the driving force then the lumped parameter 

model by Elad et al. [18] is  

  pdtq
i
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Where the flow rate, resistance, inertance and compliance of i-th channel 

are 
iii LRq ,,  and 

iC respectively, )(sin
0

  tPP is the driving force 

for the pressure amplitude, 
0P  and f 2  where f is the number of 

oscillation at the inlet of channel. 

Differentiating Eqn. (1) and executing some algebra, a second order ODE 

is obtained which exhibits time varying effect of flow only. It is a crying 

need to have a flow simulation for spatial and temporal quantities such 

that ),( txqq  . The following substitutions are integrated for space-time 

equation of the model. 
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In absence of driving force (during transition), Eqn.(2) contributes  

xtxxtxtt RuqRqCqqLuLuqLq  /2 2  (3) 

Disregarding the compliance of channel (rigid model), Eqn.(3) becomes 

xtxxtxtt eqdqcqbqaq   (4) 

Where RueRdLucLubLa   and ,,2, 2
. 

Here acb 42  confirms that Eqn.(4) is parabolic. Moreover, it befalls 

parabolic after ignoring mixed term and the rate of flow rate whose effect 

is unimportant in the system. Since the resistive force is opposite to the 

main flow, d is always positive. According to the above mentioned 

considerations, the governing equation of the dynamical problem is: 
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RLuD

Dquqq xxxt

/2
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 (5) 

which is a one dimension advection-diffusion equation with inductive time 

constant. The first term is local accumulation, the second term is movement 

by carrying fluid and the last term is movement by random motions in the 

fluid. 

Peclet Number and Inductive Time Constant 

If an instantaneous point mass is released at the center of a channel of 

length l and the downstream flow speed along x-direction is u . Then the 

advection time is ulta /  and the diffusion time is Dltd /2 . The Peclet 

number is a dimensionless parameter with ratio of diffusive time to 

advection time scales is defined as DulttPe ad //  .  

For 1Pe (in practice, if 1.0Pe ), diffusion is dominant. Spreading 

occurs almost symmetrically despite the directional bias of the flow. 

For 1Pe (in practice, if 10e P ), spreading is almost inexistent and mass 

is simply moved along the flow.  

In flow dynamics, the inductive time constant is the ratio of inertia to 

resistance such that RLtL /  where L represents the inertia [ 32/mPa.s ] for 

fluid flow and R is the resistive force [ 3Pa.s/m ] by channel. As in Eqn.(5), 

the rate of diffusion is proportional to inductive time constant and can be 

defined as: 

LtDRLuD  /2  (6) 

Where  2u  is a proportionality constant and Lt controls the rate of diffusion.  

Analytic Solution 

The exact solution corresponding to instantaneous and localized release of 

the 1D transport Eqn. (5) with initial condition )()0,( 0 xqxq  is given [20]  













 


Dt

utxx

DtA

M
txq c

4

)(
exp

4
),(

2


 

(7) 



Advection Diffusion Equation Based on Lumped Parameter Model  87 

Where the center of mass traces the trajectory, utxx  0 . 

Computational Model for ADE 

The unsteady incompressible flow along a rigid channel without driving 

force and compliance effect is an advection-diffusion Eqn.(5).  In physical 

domain of channel length ( lx 0  ), thisone-dimensional transport 

equation as initial boundary problem can be written as  

Ttthtlqtgtq
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Dquqq xxxt
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In order to obtain computational scheme by finite difference method 

(FDM), we discretize the space-time plane with mesh size .tx   Space 

size and time steps are taken equal individually. The spatial and temporal 

coordinate at the grid point ),( ji txq is defined as 
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The approximate solution at grid points ),( ji txq is 
n

ji Rq ,  so 

that ).,(, jiji txqq 
 

Computational Technique for ADE 

To solve the computational model (8), the forward time difference formula 

is  
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The backward space difference formula becomes 
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The symmetric space difference formula is  
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Substituting Eqns.(9-11) into Eqn. (8)to get 
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Dropping the truncation error terms and rearranging, we can explicitly 

solve for time level that implies 
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which is an explicit finite difference scheme by FTBSCS technique.  

Stability Condition for the Scheme 

Stability is a property that concerns the growth or decay of errors 

introduced at any stage during the computation and strongly governs the 

numerical solution. For advection-diffusion problem, we calculate von 

Neumann stability condition ,1)sin)cos(  xkiCxke mm
ta

where a 

is a constant, mk  is the wave number and C is the CFL condition. The von 

Neumann simultaneous stability condition for the scheme [21] is 0 sr  

and 021  sr  which correspond to  

2/10  s and srs 21 . This condition controls the time 

increment by 
Dxu

x
t

2

2




  where D for rate of mass diffusion and u is 

the flow speed. It is mentionable that when 0u  the Eqn.(8) becomes 

pure diffusion and satisfies the stability limit. Also, for 0D , the 

problem reduces to pure advection and gives the well-known stability 

limit. 
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Results and Discussions 

Validation of Numerical Scheme 

The time marching scheme for Gaussian curve along the model channel as 

a test case is taken for    

2)(200
),(

utxx cetxq


  (14) 

The advection-diffusion (for 0,0D  u ), pure advection (for 0,0D  u ) 

and pure diffusion (for 0,0D  u ) equations are respectively 

xxxt Dquqq   (15) 

0 xt uqq  (16) 

xxt Dqq   (17) 

The Eqns. (15-17) with initial condition from Eqn. (14) is solved 

numerically. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Position (x)

F
lu

x
 (

q
(x

,t
))

 

 

Exact

Ad-Dif

Ad

Dif

 

Figure 1: AD effect for 1.0Lt s with cm/s5.0u . 

For our model channel of length cm1l  , cm/s5.0u  and 

/scm025.0 2D  in (8), the distribution of Gaussian pulse at s1t  is 

computed and compared with the flux obtained using explicit finite 

difference method for three cases (advection-diffusion, advection and 

diffusion) as shown in Figure 1. It is seen that result of (16) is exactly 

accurate with the exact distribution (14). And diffusion is negligible for (15) 

and (17). This result is carried out for various values of x with 
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0.05,001.0  Crt , 20Pe  and 1.0Lt  The numerical value of 

Pe ensures the dominance of advection for slow motion along small 

dimension of biological model channel. As depicted in Figure 2, 

0.05r,001.0  Ct and 0.67Pe for the change in 3Lt . Due to increase 

the inductive time constant the diffusion becomes dominant and mass 

spreads out faster than the flow moves. The convergence of the solution is 

found for .40  Lt  
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Figure 2: AD effect for 3Lt s with cm/s5.0u . 

Simulation for Parallel and Oscillatory Flows 

Respiration in human lung is the consequence of oscillatory flow in which 

parrel flow condition exits in transition of cycle change. So, parrel and 

ossilatory flow is simulated applying numerical scheme FTBSCS. If 

cm/s5.0u , 2000Pe and advective time constant is s001.0Lt , the 

numerical scheme represents the advection and diffusion effects as in 

Figures 3 and 4. 
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Figure 3: AD effect for 001.0Lt s with cm/s5.0u for transition phase ( 0 ). 
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Figure 4: AD effect for 001.0Lt s with cm/s5.0u  for oscillatory phase  

 ( 0 ). 

This section represents the effect of inductive time constant for parallel 

and oscillatory flow in alveolus zone of lung channel where flow rate is 

very low. In this area, oscillatory flow occurs due to the mutual driving 

force. It is very difficult to measure the real effect of flow in this region. 

So, the inductive time constant may infer the movements of O2 particles 

by advection. Moreover, the distribution of particles is at rest in time of 

phase transition such that pure diffusion may occur. As shown in Figure 3, 

for a momentary time s 0.002t (solid curve) and s 0.02t (dash curve), 

the advection and diffusion effect is measured for 001.0Lt s. The 

diffusion effect is almost negligible and advection effect is growing. At 

the eleventh of time, s 0.2t (dot curve) the advection effect is found 

dominant on diffusion where 1.0Cr  and 2000Pe . As depicted in 

Figure 4, the oscillatory phase is taken in which no diffusion effect is 

found. This experiment is conducted for inlet condition stated in [22]. 

The advection is dominant entire the experiment for s1 tT . It may 

occur due to small dimension of channel and for regaining of driving 

force along the channel.  

Error Estimation and Convergence 

The explicit finite difference scheme FTBSCS is employed to compute the 

result for transition and oscillatory condition in this experiment. The 

relative error estimated in L1-norm is defined by 

e
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Where eq  is the exact and aq  is the approximate solution computed for 

]10,0[t s. 
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Figure 5: Rate of convergence at transition phase ( 0 ) 
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Figure 6: Rate of convergence at oscillatory phase ( 0 ) 

Error estimation is essential enough in support of accuracy of numerical 

result. For this, the analytical result is used for code validation as well as 

error estimation of transition and oscillatory phases. The scheme is the 

same but flow condition is different. Figure 5 shows that initially the error 

is much and within a few second it becomes steady and the solution is 

convergent with a small error, 
31007.1 err . On the contrary, the rate 

of convergence for oscillatory state is gained with 
31035.1 err  as 

shown in Figure 6.  
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Conclusion 

This paper modify lumped parameter model to 1D advection-diffusion 

transportation equation as IBVP. The inductive time constant is introduced 

to this new model that plays a significant role of advection-diffusion effect. 

The numerical model is solved for estimation of flux distribution during 

transition and oscillatory phase along human lung model channel by 

explicit FTBSCS technique. In transition phase, advection dominates the 

diffusion whereas in oscillatory flow, no diffusion effect exists even for 

1.0Pe . Relative errors of both flow phases is calculated and found 

convergent within a small error 0.001. 
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