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Abstract 

Statistical analysis is better when the data are truly representative. However, extraneous stuff such as 

contamination, irrelevant data, missing observation, distributional faulty in the data cause inaccurate estimation 

of model parameters. In case of regression analysis, if we remove the extraneous stuff of such data, then we can 
lose necessary information. On the other hand, traditional estimation and classical test of regression coefficients 

may fail completely if we retain such type of data. This study aimed to provide an appropriate choice of 

estimation method, model selection criteria and introducing appropriate testing procedure for regression 
coefficient in case of contaminated data. Results of this study established that for contaminated and skewed 

data, robust approach outperforms classical approach to accurate estimation of parameters and identified that 

outliers are responsible for the inflated residual sum of squares that results in an incorrect solution of model 
selection and the test of regression coefficients. Findings from this study suggested that we can use the weighted 

residual sum of squares instead of the residual sum of squares to avoid such an inflated problem.  
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1. Introduction 

 

Regression analysis is the most widely used statistical technique for fitting models to real-life data and is 

regularly applied to most sciences. Regression analysis goes forward with several basic steps including 

model building, model selection, and hypothesis testing. The hypothesis test ensures whether underlying 

assumptions and methods of estimation are suitable for data or not. The fitted model is used to predict 

the future behavior of variables. However, before going to forecast by a model, we have to justify 

whether this model is adequate or not. In regression analysis, one of the most important tasks is to 

control extreme observations (outliers) because they are sensible for certain types of models. For 

example, in the presence of outliers and skewed data, the ordinary least square (OLS) is unable to 

produce robust estimates. To fix this problem, two methods are suggested in the literature (Rousseeuw & 

Leroy, 1987). The first one is regression diagnostics (Rousseeuw & Leroy, 1987), however, in the 

presence of multiple outliers, it is unfortunately much more difficult to diagnose them. The other 

approach is robust regression (Rousseeuw & Leroy, 1987). Because in the case of outliers and 

contaminated data, some of the OLS assumptions (e. g., error follows the normal distribution with 

constant variance) are violated, and for that reason, OLS does not provide appropriate result. In OLS, we 
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minimize the residual sum of squares that is extremely affected by outliers and contaminated data. 

Moreover, previous studies pointed out that in the presence outlier, weighted (robust) mean (Hossain, 

2016) and variance (Hossain, 2017) provide more accurate estimates than their classical version. For that 

reason, we should use the robust regression method such as LAD, LMS, and M-estimation to obtain 

better results in such situations. 

 

Model selection is another important part of regression analysis. In this procedure, firstly, we must fit 

several models and then among them, we select the most appropriate model by using a numerical 

summary of their goodness-of-fit, properties or combination of both for prediction (Määttä et al., 2016). 

Sequential testing, allowing variables to be added or deleted at each step, has often been employed. 

However, such p-value-based testing techniques only evaluated two nested models and have been widely 

criticized, as hypothesis tests are a poor basis for model selection in general. Cross-validation and its 

variation have been suggested and discussed as a useful model selection method (Akaike, 1974). The 

adjusted coefficient and Mallow’s 
pC  statistic is also widely used in classical regression analysis and 

provide a ranking for all considerable models. Moreover, several model selection criterion, such as 
2

 R

Criterion, Root mean square deviation  RMSD , Adjusted 
2

R , Criterion Akaike information criterion 

 AIC , Akaike information criterion with small sample correction  AICc , Bayesian information 

criterion  BIC , Schwartz’s information criterion  SIC , Hannan-Quinn information criterion   , HQC

Mean absolute error  MAE  and their variations will also be considered (Draper & Smith, 1981).  

 

The alternative to OLS regression in the case of outliers is robust regression. Robust regression modeling 

has been applied in several studies. The introduction of Least Median of Squares approach comes from 

Rousseeuw (1984). In order to obtain LAD estimators, Charnes et al. (1954) addressed linear 

programming. Portnoy & Koenker (1997) provide a comprehensive summary of the LAD approach. 

Koenker & Bassett (1978) and Pollard (1991) obtained large sample properties for the LAD estimates. 

Alma (2011) concluded that the S-estimator would increase its effectiveness in case of 10% breakdown 

(Almetwally & Almongy, 2018). MM-estimation works best in contrast to a wide set of extrinsic 

condition (Almetwally & Almongy, 2018). From the descriptive point of view, we can say that the 

criteria and usual hypothesis testing for ordinary square regression may fail miserably even for a large 

sample. Khan & Majumder, (2012) introduced weighted model selection criteria to identify the best-

fitted model under the OLS, LAD, and LMS regression in case of contaminated data. However, to the 

author’s knowledge, no scholarly article has been developed on hypothesis testing in the case of the 

contaminated and skewed data under these estimation approaches. Therefore, this study attempts to 

fulfill this methodological gap. This research aims to compare the performance of 𝑂𝐿𝑆, 𝐿𝐴𝐷, and 𝐿𝑀𝑆 

methods and test the regression coefficients by using the proposed WRSS based test statistics in case of 

contaminated data. 
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2. Methods and Materials 

Most well-known regression estimator is the ordinary least squares (OLS) estimator, ˆ
LS

  which is 

defined as the vector that minimizes residual sum of squares (Gujarati, 2004).  

 

 
2

1
ˆ 

n

i ii
SSE y y


    (2.1) 

 

But the major shortcoming of the traditional approaches to linear regression has always been the fact that 

in the regression analysis one assumes that the errors are truly random or accidental. Blunders, clerical 

errors, misprints in published or electronically stored data are simply ignored in the analysis (Giloni & 

Padberg, 2002). "Whereas", this type of data has a large influence on the classical approach. The 

classical approach is also highly influenced by outliers and contaminated data. Sometimes outliers are 

the result of a systematic problem with either our data collection techniques or our model (McCann, 

2005). The outliers occurring with extreme values of the regressor variables can be especially disruptive 

(Thanoon, 2015). Contamination can, of course, take many forms. It may be recording or reading errors. 

In this case, correction or rejection might be the only possibility. Alternatively, it might reflect low 

incidence mixing of x with another random variable whose source and manifesto are uninteresting.  For 

this problem, McCann (2005) proposed a well-earned approach for dealing with outliers and 

contamination. These are the robust (or resistant) methods such as least median square (LMS), least 

absolute deviation (LAD), least trimmed squares (LTS), M-estimation, S-estimation etc.  

 

LAD represents the method of solving an over-defined system of (linear) algebraic equations mentioned 

by Taylor (1974) is related to KF Gauss and PS Laplace. Mathematicians suggest to minimizes the sum 

of absolute residuals in the equations (Dasgupta & Mishra, 2011). 

 

1

ˆ  
n

minimize

i

i





   (2.2) 

 

This is also called 
1

L regression (or 
1

L - norm regression) whereas least square is 
2
 L (Draper & Smith, 

1981). The least squares regression is very far from the optimal in many non-Gaussian situations, 

especially when the errors follow distributions with longer tails (Thanoon, 2015). Unlike the LS method, 

the LAD method is not sensitive to outliers and produces robust estimates (Chen et al., 2008). 

 

A different approach, least median squares (LMS) is introduced which minimizes the median of the 

squared residuals (Rousseeuw, 1984). That is replacing "sum" in OLS by median yield the LMS 

estimator of the parameter. 
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The least median of squares (LMS) estimator minimizes the objective function, 

 

 
2

ˆ ˆ

2

                         
     ˆ  
medminimize minimize med

i i i ii
y y

 
    (2.3) 

 

ere,  2
1, 2,  , 

i
i n    are the residual squares. The solution is that   that produces the minimum 

such median (Draper & Smith, 1981). In the case of least squares, the notion of the breakdown point 
*
ò  

is zero. That is,  

*
0ò  

 

But whereas the breakdown point of the univariate median is as high as 50% (Hampel, 1971). 

 

2.1 Weighted Model Selection Criteria 

 

We know that the residual sum of squares is used in all the classical model selection criteria though RSS 

is very much affected by outlier. To this problem, we have to use the weighted residual sum of squares s 

(WRSS) instead of RSS, which is given by 

 

2

1
( )ˆ

n

i i ii
WRSS w y y


   (2.4) 

 

Where,  

 
i

w  is the weight for  
th

i observation 

 
i

y  denotes the true value for 
th

i  trial of the regressand variable, 

  ˆ
i

y  is the predicted value for 
th

i  trial of the regressand variable. 

 

Now 
i

w  can be computed as 

0
1         2.5

0           

i

i

if
w s

otherwise




 



 

 

(Rousseeuw, 1987, pp-44) 

And the scale estimate is denoted by 
0

s is defined as 

 

0 25
1.4826 1                  

i

med
s

in p


 
  

   

(Rousseeuw, 1987, pp-44) 
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We propose to use the weighted residual sum of squares (WRSS) in place of residual sum of squares 

(RSS) in all the classical model selection criteria to obtain better fitted model in case of contaminated 

data (Khan & Majumder, 2012).  

 

2.2 Proposed Test for Overall Regression Coefficients 

 

In regression analysis firstly performing test is often a test of whether the regressor variables have any 

significant effect on the dependent variable. Let us consider the general form of the linear regression 

model  

 

0 1 1 2 2 p p
y X X X          (2.5) 

 

Suppose we want to test the following hypothesis 

 

 
0 1 2

: 
p

H       

1
: H At least one 

j
 ’s is not equal to zero,   1, 2,  , j p 

 
 

Under the null hypothesis the reduced model becomes 

 

 
*

0
y      

 

Now the proposed test statistics is, 

 
 

 

 

1
     

fullreduced

full

WSSR WSSR

p
F

WSSR

n p








 (2.6) 

 

Assuming the normality of the distribution of random errors F  has an F  distribution with numerator 

and de-numerator degrees of freedom 1p   and n p  respectively. Where, k  is the number of 

explanatory variables including intercept. 

 

At %  level of significance the critical value of F  with numerator and de-numerator degrees of 

freedom 1p   and n p  respectively is  1,   
 

c p n p
F F 

 
 . If the calculated value of F  is greater 

than the critical value of F , then we may reject the null hypothesis. That is, there are significant effects 

of the explanatory variables on the dependent variable. Otherwise, we may not reject the null hypothesis. 

 



JUJSS Sumon and Majumder 

216 

2.3 Proposed Test for Individual Regression Coefficient 

Let us consider the general linear regression of equation (2.5). Consider that the weighted residual-based 

F test provides information that there are significant effects of the explanatory variables on the 

dependent variable (i. e., null rejected). Then we eager to specify the explanatory variable for which 

there is a significant effect on the dependent variable. 

Now let us consider the following hypothesis 

 

0 :  0jH    against 

             1 : 0jH   , 1, 2,  , j p 
 

 

The test statistics under the null hypothesis is given by  

 

 

ˆ

ˆ

j

j

j

t
SD




  (2.7) 

To obtain the test statistics, we have to calculate an estimate of the standard deviation of ˆ
j

  by 

substituting ̂  for   by using the following formula, 

 

   
 

2

.1

 ˆˆ
j

n

ij ji

SD

x x









 

 

Where,  

 

 ˆ
1

WSSR

n p
 

 
  

 

 ij
x  is the value of the 

th
i  observation for 

th
j  explanatory variable 

 . j
x  is the mean value of 

th
j  explanatory variable 

 

If we specify the shape to be normal (bell-shaped), that is, if we assume the normal linear regression 

model, then the resulting distribution of the test statistics t  is still close to the t  distribution with 2n   

degrees of freedom. Assuming the normality of the error term, the critical value of t at %  level of 

significance is    2 2c n
t t 


 . If the calculated value of j

t  is greater than the 
c

t , then we may reject 

the null hypothesis. That is, there is significant effect of the explanatory variable j
x  on the dependent 

variable. Otherwise, we may not reject the null hypothesis. 



Model Selection and Testing Regression …  

217 

2.4 Data Source 

This paper uses GNP data from Table B-1, p. 232; third measure money stock data from Table B-61, p. 

303 of the economic report of the president (1985) for scrutinizing the performance of different 

estimations methods in simple regression by proposed model selection criteria. The explanatory variable 

represents the third measure of money stock data, and the response variable is gross national product 

(GNP). The data was also used by Gujarati (2004), and others. 

 

3. Results 

 

Consider four different case to make comparison of the methods OLS, LMS and LAD. In first case, the 

comparison is made in simple regression for mentioned data without outlier. Afterward a single outlier is 

taken in the response variable Gross national product (    , in y  direction) and presented in this section 

as second case. Single outlier is taken in the explanatory variable money stock measure (   ., in x  

direction) and presented in this section as third case. Outliers are taken in both the dependent variable 

(    , in y  direction) and independent variable (    , in x  direction) in the fourth case. The results 

obtained in each case are presented below: 

 

Uncontaminated Data 

 

The classical regression estimation procedure (    , OLS) is as usual. On the other hand, the objective 

functions of LMS and LAD methods are not straightforward that's why the estimation is not unique. 

Thus, an iterative procedure is adopted in estimating the fitted models for both methods. The fitted 

models by the method of OLS, LAD and LMS are respectively given in the next:  

 ̂                      (3.1)  

 ̂                    (3.2) 

 ̂                                                    (3.3) 

From the figure 1, we observe that the 𝑂𝐿𝑆, 𝐿𝐴𝐷, and 𝐿𝑀𝑆 methods give almost the same fitted line for 

the uncontaminated data. Also, classical model selection criteria (see Table 1 in appendix) show that all 

three methods perform very closely in order to fit the approximate model. Although the result of the 

model selection criterion is almost same, but all the criteria suggest that 𝑂𝐿𝑆 is better than other methods 

in case of uncontaminated data. Weighted model selection criteria (see Table 1 in Appendix) shows that 

LAD is better than other methods. Classical F-test (see Table 1 in Appendix) and proposed test (see 

Table 1 in Appendix) indicate that linear regression model equation 3.1, 3.2, 3.3 provides a better fit to 

the data than a model that contains no independent variables.  Both the classical t-test (see Table 1 in 

Appendix) and proposed t-test (see Table 1 in Appendix) indicate that money stock data have a 

significant association with GNP. Whereas, intercept coefficient is also significant 
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Contamination in y-Direction 

 

In this section, a single outlier is taken in GNP of the same data used in immediate previous case. The 

fitted models by the method of OLS, LAD and LMS are respectively given in the next: 

 

 ̂                    (3.4) 

 

 ̂                   (3.5) 

 

 ̂                   (3.6) 

All the fitted models from equation 3.1 to equation 3.3 indicate that the intercept is positive. But if we 

consider outlier in the y-direction of the data then OLS fitted model shows a negative intercept (see 

equation 3.4), which designates a failure of the OLS method to estimate the actual model. Whereas, the 

LMS and LAD fitted models computed the actual signs of the relationship.  

 
Figure 1. The Observed and Fitted y against Observed x for Uncontaminated Data 

 

 
Figure 2. The Observed and Fitted y against Observed x for Contaminated Data in y-Direction 
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Graphical presentation of the fitted GNP against Money stock measure (    , presented in equation 3.4 

through equation 3.6) is exhibited in the Figure 2. Figure 2 reflects that the LMS and LAD methods yield 

a good fit for contaminated data in the y-direction. On the other hand, the OLS method has been affected 

by the outlier data, and therefore the intercept is so much different from the original one (see Figure 1). 

But all the classical model selection criteria (see Table 2 in Appendix) indicate that the estimated OLS 

model is better than the estimated LAD and LMS models, which is contradictory to the graphical 

presentation. On the other hand, examining all the weighted model selection criteria (see Table 2 in 

appendix) reveals that the fitted LMS and LAD models are better than the fitted OLS model which is 

exactly similar to the graphical representation and the actual relationship that exist between GNP and 

money stock measure. It is also revealed that LAD method is better than LMS method. Classical F-test 

(see Table 2 in Appendix) unveils that fitted OLS line (see equation 4.4) is better than a model that 

contains no independent variables whereas the conclusion is different under LAD and LMS approaches. 

The proposed weighted F test (see Table 2 in Appendix) reflects that fitted LAD and LMS provide a 

better fit than a model with the only intercept but not for the fitted OLS line. The classical t-test (see 

Table 2 in appendix) indicates that there is no significant association between money stock measure and 

GNP under the LAD and LMS methods but there is a significant association between money stock 

measure and GNP under the OLS method whereas the intercept coefficient is not significant for all the 

method. The proposed weighted t-test (see Table 2 in appendix) unveils that there is a significant 

association between money stock measure and GNP under all methods whereas the intercept coefficient 

is significant for LAD and LMS methods but not for the OLS method. 

 

Contamination in x-direction 

 

In this section, a single outlier is taken in money stock measure of the same data used in uncontaminated 

data. The fitted models by the method of OLS, LAD and LMS are respectively given in the next:  

 

 ̂                     (3.7) 

 ̂                                                    (3.8) 

 ̂                                                    (3.9) 
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Figure 3. The Observed and Fitted y against Observed x for Contaminated Data in x-Direction 

 

Figure 3 shows that the LMS method yield a good fit than other two methods for contaminated data in 

the x-direction. Fitted models (see equation 3.7 and 3.8) for the contaminated data in x-direction under 

OLS and LAD methods are different from the models (see equation 3.  and 3.2) for original data 

whereas the fitted model (see equation 3.9) for the contaminated data in x-direction under LMS methods 

are different from the model (see equation 3.3) for original data. It is evident from the classical model 

selection criteria (see Table 3 in Appendix) that OLS method is better compare to LAD and LMS 

methods for the contaminated data in X -direction which is aberrant to the graphical presentation. That 

signify the classical model selection criteria fail to identify the best method that fit to the majority of the 

data. According to all the weighted model selection criteria (see Table 3 in Appendix) LMS method is 

better than the OLS and LAD methods. Classical F-test unveils that the fitted model under only the OLS 

method is better than the model with the only intercept coefficient. According to the proposed weighted 

F-test fitted model under the all the methods is better than the model with the only intercept coefficient. 

The classical t-test (see Table 3 in appendix) indicates that there is no significant association between 

money stock measure and GNP under the LAD and LMS methods but there is a significant association 

between money stock measure and GNP under the OLS method whereas the intercept coefficient is not 

significant for LMS method. The proposed weighted t-test (see Table 3 in appendix) unveils that there is 

a significant association between money stock measure and GNP under all methods whereas the 

intercept coefficient is also significant for all methods. 

 

  



Model Selection and Testing Regression …  

221 

Contaminated Data both in X-Direction and y-Direction 

 

The fitted models by OLS, LMS and LAD method after considering the outliers in both the x-direction 

and y- direction are as like as: 

 

 ̂                     (3.10) 

 ̂                                                    (3.11) 

 ̂                                                               (3.12) 

 

Figure 4 reflects that LMS provide better fit than LAD and OLS. By examining all the classical model 

selection criteria (see Table 4 in Appendix), it may conclude that the OLS method is better than the LMS 

and LAD method which is aberrant to the graphical presentation. It signifies that the classical model 

selection criteria fail to identify the best-fitted model for contaminated data in both directions. On the 

other hand, all the weighted model selection criteria (see Table 4 in appendix) indicate that the LMS 

fitted line are better than the OLS and LAD fitted lines which is exactly similar to the graphical 

representation. Classical F-test (see Table 4 in appendix) unveils that the model with the only intercept 

coefficient is better than the fitted model under the OLS, LAD, and LMS methods. According to the 

proposed weighted F-test (see Table 4 in appendix), the fitted model under the OLS and LMS methods is 

better than the model with the only intercept coefficient. The proposed weighted t-test (see Table 4 in 

appendix) unveils that there is a significant association between money stock measure and GNP under 

OLS and LMS methods whereas the intercept coefficient is significant for all methods. 

 

Figure 4. The Observed and Fitted y against Observed x for Contaminated Data in both x-Direction and 

y-Direction 

5. Conclusion 

This paper develops weighted test statistics in order to test the regression coefficients and applied the 

existing weighted model selection criteria for the purpose of comparison of the different estimation 

methods of the linear regression and it also develops weighted test statistics in order to test the 

regression coefficients. Analysis tells us, the weighted model selection criteria based on WRSS perform 
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well for contaminated data, while the usual model selection criteria fail to identify the best method in 

fitting the regression model. Another important fact is that weighted model selection criteria fail to 

identify the best-fitted regression model in the case of uncontaminated data. According to weighted 

model selection criteria, the LMS method gives a better fit than other two methods for contaminated data 

in x-direction and y-direction. It is also palpable from simple regression for contaminated data both in X-

direction and y-direction that the LMS method is the best among the three compared methods. It is 

evident from the analysis part is that the weighted test statistics based on WRSS perform well for 

contaminated data, while the usual test statistics fail to test regression coefficients. 
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Appendix 

Table 1. Classical and Weighted model selection criteria of simple linear regression for 

uncontaminated data 

Criterion 
Classical Weighted Classical Weighted Classical Weighted 

OLS LAD LMS 

RMSD 56.816 13.815 58.341 7.1154 62.915 11.262 

AIC 4295.6 253.969 4529.3 67.373 5267.32 168.787 

AICc 4296.6 255.059 4530.4 68.464 5268.41 169.878 

SIC 4706.2 278.246 4962.3 73.813 5770.83 184.921 

   0.9943 0.9997 0.9940 0.9999 0.9930 0.9997 

Adjusted    0.9938 0.9996 0.9935 0.9999 0.9924 0.9997 

MAE 44.417 10.240 40.533 3.108 41.619 6.8023 

FPE 4304.0 234.894 4538.3 67.505 4871.72 169.119 

Hypothesis testing by using classical and weighted test F statistics 

  -statistics 

(p-value) 

2099.17 

(<0.001) 

22632.8 

(<0.001) 

2007.72 

(<0.001) 

19266.5 

(<0.001) 

2900.07 

(<0.001) 

27860.6 

(<0.001) 

P value of the corresponding coefficient by using classical and weighted test t statistics 

   0.0031 (<0.001 0.0132 (<0.001 0.0014 (<0.001 

   <0.001 (<0.001 (<0.001 (<0.001 (<0.001 (<0.001 

Table 2. Classical and Weighted model selection criteria of simple linear regression for contaminated 

data in y-direction 

Criterion 
Classical Weighted Classical Weighted Classical Weighted 

OLS LAD LMS 

RMSD 6450.89 203.34 7876.62 54.42 7929.82 60.37 

AIC 55376364 55022 82558825 3941.5 83677806 4850.7 

AICc 55376365 55023 82558826 3942.6 83677807 4851.8 

SIC 60669844 60282 90450702 4318.4 91676648 5314.3 

   0.35816 0.9994 0.0431 1 0.0301 0.9999 
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Adjusted    0.3047 0.9993 0.0000 1 0.0000 0.9999 

MAE 4257.216 59.247 2135.66 30.59 2156.16 36.89 

FPE 55485440 50890 82721443 3949.4 77393195 4860.2 

Hypothesis testing by using classical and weighted test F statistics 

  -statistics 

(p-value) 

6.6961 

(0.0238) 

1.3199 

(0.2730) 

1.4719 

(0.2483) 

14794 

(<0.001) 

1.8166 

(0.2026) 

27861 

(<0.001) 

P value of the corresponding coefficient by using classical and weighted test t statistics 

   0.1466 0.2403 0.9893 (<0.001 0.7867 (<0.001 

   0.0238 (<0.001 0.4763 (<0.001 0.5442     (<0.001 

Table 3. Classical and Weighted model selection criteria of simple linear regression for contaminated 

data in x-direction 

Criterion 
Classical Weighted Classical Weighted Classical Weighted 

OLS LAD LMS 

RMSD 234.594 127.036 643.443 97.938 7716.98 60.375 

AIC 57280.1 21475.1 550939.3 12764.1 79246201 4850.7 

AICc 57280.2 21476.2 550940.4 12765.2 79246202 4851.8 

SIC 60343.7 23527.9 603604.2 13984.2 86821421 5314.3 

   0.3078 0.9716 0.2709 0.9831 0.0000 0.9935 

Adjusted    0.3007 0.9692 0.2102 0.9817 0.0000 0.9930 

MAE 75.33 68.207 515.77 44.262 2099.276 36.891 

FPE 57280.4 19862.2 552024.5 12789.2 73294425 4860.2 

Hypothesis testing by using classical and weighted test F statistics 

  -statistics 

(p-value) 

5.336 

(0.0395) 

10.664 

(0.0068) 

4.604 

(0.0530) 

14794 

(<0.001) 

4.734 

(0.0513) 

27861 

(<0.001) 

P value of the corresponding coefficient by using classical and weighted test t statistics 

   (<0.001 (<0.001 (<0.001 (<0.001 0.0674 (<0.001 

   0.0395 0.0215 0.1387 0.0078 0.1534 (<0.001 
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Table 4. Classical and Weighted model selection criteria of simple linear regression for contaminated 

data in both x and y direction 

Criterion 
Classical Weighted Classical Weighted Classical Weighted 

OLS LAD LMS 

RMSD 1549.92 1241.39 617.00 97.938 8952.34 56.233 

AIC 2500288 2050707 506593 12764.1 106649118 4207.91 

AICc 2500289 2050708 506594 12765.2 106649118 4209.0 

SIC 2634016 2246736 555019 13984.2 116843808 4610.15 

   0.1087 0.9199 0.9802 0.9831 0.0002 0.9998 

Adjusted    0.0993 0.9132 0.9786 0.9817 0.0000 0.9998 

MAE 383.73 1001.15 482.19 44.262 3014.235 33.063 

FPE 2500302 1896689 507590 12789.2 98639249 4216.20 

Hypothesis testing by using classical and weighted test F statistics 

  -statistics 

(p-value) 

1.4585 

(0.2504) 

11.052 

(0.0614) 

0.2353 

(0.6364) 

6.7251 

(<0.2357) 

0. 3961 

(0.0513) 

7482.53 

(<0.001) 

P value of the corresponding coefficient by using classical and weighted test t statistics 

   0.055 (<0.001 0.1125 (<0.001 0.1867 (<0.001 

   0.250 (<0.001 0.7810 0.1007 0.8442     (<0.001 

 
 

 

 


